SN0 O
57326

SC 20,764~/

NASA CASE NO.Aq’

PRINT FIG, 2

NOTICE 3/7

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under
programs of the National Aeronautics and Space Administration.
The invention is owned by NASA and is, therefore, available for
licensing in accordance with the NASA Patent Licensing

Regulation (14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-owned inventions,
it is NASA policy to grant licenses to commercial concerns.
Although NASA encourages nonexclusive licensing to promote
competition and achieve the widest possible utilization, NASA
will consider the granting of a limited exclusive license,
pursuant to the NASA Patent Licensing Regulations, when such a
license will provide the necessary incentive to the licensee to

achieve early practical application of the invention.

Address inquiries and all applications for license for this
invention to NASA Patent Counsel, Johnson Space Center, Mail
Code AL3, Houston, TX 77058. Approved NASA forms for
application for nonexclusive or exclusive license are available

from the above address.

(NASA-Case~MSC~20S64-1) FEAL-TIME

- S , -1IKYE GARBAGE -1 4 sC
CCLL;LTIQN FCE IIST EFCCELSSING Fatent 7 4d7-143¢63 ﬁ
Application (MASA) 31 E CSCL 09B

Unclas
G3/60 43753

AWARDS ABSTRACT MASA Case No MSC-20964-1/i7
MSC-20965-1

REAL-TIME GARBAGE COLLECTION FOR LIST PROCESSING

The invention relates to a method of practical real time garbage collec-
tion for list processing systems.

In a 1ist processing system (FIG. 1), small reference counters CTR are
maintained in conjunction with memory cells tor the purpose of identify-
ing memory cells that become available for reuse (FIG. 2). The counters
are updated as references to the cells are created and destroyed, and
when a counter of a cell is decremented to logical zero the cell is
immediately returned to a list of free cells. The improvement the
invention provides is that when a counter must be incremented beyond the
maximum value that can be represented in a small counter, the list
element LE represented by the cell A is restructured so that the addi-
tional reference count RA can be represented (FIG. 3). The restructuring
involves allocation an additional cell AA, distributing counter CTRX, tag
TAG TAG2, and pointer CAR CDR information among the two cells, and
linking LINK both cells appropriately into the existing list structure B
C. Processes for adding references ADD (FIG. 5), deleting references DEL
(FIG. 6), and memory retrieval RET and storage STO (FIG. 7) manipulate
normal (FIG. 2) and expanded (FIG. 3) cell formats in a manner transpar-
ent to the list processor LP.

By the above method, all inaccessible cells are immediately identified
and reclaimed; thus there is never an unanticipated delay when needing a
free cell. Overhead and complexity are much less than other methods
attempting real time garbage collection. Options possible with this
method (FIG. 9) provide greater flexibility in cell formats than other
methods, which both eases its adaptation to existing list processing
systems, and simplifies the design of next generation highly parallel
Jist processing systems. Practical and efficient real time garbage
collection as provided by the invention is essential to the anticipated
expansion of 1ist processing to support the use of artificial
intelligence technology in the areas of monitoring and control, and in
the area of reliable conversational interaction.

Inventor: Robert L. Shuler, Jr.
Employer: NASA/Johnson Space Center

Initial Evaluator: Elric N. McHenry

[m—— e e e

MEM

——— e]

CAT |
CFI |

LP
?

PU2

PUI

FIG. /

LE

I
_
[
I
[
I
|
_
|
{
|
_
[
|
l
l
_
_
l
I
_
I
i

-

COR

CTR | TAG

C::/7/r

—~———d

I

B

FlG. 2.

CDR

CTRX
CAR

A
TAG 2
AA
TAG

—_——— ———-———CE—— ——— e e — — ———
"
4
/

B

F1G. 3.

w\‘

CFI2

I T T

M

P

X
CONTENT 2

PR e

e

CONTROL

1
Ol o _
1 o _ xio
2] (sl 1< || ELE e le|idy e \=/
a o © elllio S|S 3 |
| A t |
| B —T—_ |
—_—— 1
U B —
o £
< 3
[P
| H H If I
! S !
RO |

“CFI]

FIG. 4.

r——="""

_________________ A
CELL |
CONTENT CELL =—MEM(CA)| |
PROVIDED |
}
A2 b -
 ahianiih A el it |
; |
| TAGC=EXP {
|
} |
: |
l |
| n
| !
! CTRC=——CTRC+| CARC =—CARC+I| !
] _ |
- —o——d
A4
OCA«—CAl4-
l AS.
NEW (CA) v a8
- MEM(CA) =——CELL
l A6
MEM(CA) «s— CELL
l ar
____________]
TAGC =——EXP !
CARC =——CTRC |
CTRC=——CA !
L i
: I
!
MEM(OCA) =——CELL [— —
]
____________ |

END
ADD

F1G. 5.

Bl

(SIERT -+ ocA=—nIL
e ___B5
CA>DLIM 3 -?
I'YES |
NS ? | - CELL=s———MEM(CA) ,
NW , '
86 ___ __ 1
r CARCL } }
| | YES TAGC=EXP l
H— MEM(CA) =—CELL CARC ==~CARC-| ? |
! b o NO |
: s} :
)
| |CELL=—MEM(OCA) OCA=-CDRC| | ! |
CTRC=—SAVE (| REL(CA) |
| [MEM(OCA) =—CELL SAVE=CARC| | | :
| i |
]
l | - - '
1.__________________________J:CTRC CTRC-I |
[—_———— e
B8 CTRC < MIN
< ~ MEM(CA)=——CELL ¢ NO
Bl
CELL =——MEM(OCA)
S =———CTRC BIO
CA =———0CA
OCA =——CELL(S) SAVE «——CELL(S)
S - S+| CELL(S) =—OCA
OCA =——CA
_____________ | ___BI2 CA @———SAVE
‘] CTRC =———§
| MEM(OCA)=—CELL
YES /o, o\ NO |
? I
_________________ .

START RET

cl
CELL=——MEM(CA)
c3
C2 X TAGC=EXP cA .
YES »| SAVE =—CARC
CELL =—MEM(CA)
CTRC =—SAVE
]
ENDRET
START STO
. D2
CTRC >MAX SAVE ==- CDRC
YES | CELL (CORC) =——MEM (CA)
CA= CORC
CDRC = SAVE
l
D3
MEM(CA) ==—CELL

END STO

FIG. 7

ERROR:FREE LIST

EXHAUSTED

CELL =— MEM(FREPTR)
CA =——FREPTR

FREPTR-=-CDRC

v
QEND NEW)

FlG. 8.

Fl

(START REL)
'

CDORC =—FREPTR
FREPTR=-CA
CARC =—NIL
CTRC «=—MIN

TAGC =—UNEXPANDED CELL
MEM(CA)=CELL

I
C END REL)

OLD REFS

—

NEW REF

\ NEW CELL
N\
T

e — — -

c <
gA CAR! | CDRI
t <
1A
TIA| CAR 1 [CORI
TN
BB
.—

i i

F1G. 9

» FioU~ LU IS = L/ PMOL—LUY0D~ 1

(92}

15

20

Patent

-i-
REAL-TIME GARBAGE COLLECTION FOR LIST PROCESSING

Origin ¢t the invention

The invention described herein was made by an employee of the tnited
States Governmeiit and may be manufactured and used by or for tne
Government of the United States of America for governmental purposes
witheut the payment of any royalties thereon or therefor.

rield of the irvention

This invention relates to data processing systems and their &rrange-
ments for allocation and deallocation of memory space, particularly to
an improved mechanism for keeping track of the number of active refer-
ences to & memory cell in a list processing system.

Description of Prior Art

Many present data processing systems are concerned with the manipula-
tion of linked 1ist structures. Each memory cell in a list contains
pointers, which refer either to cther list fragments, or to fundamental
data items which are called atoms. Atoms, which can be symbols or
riumbers, may alsc refer tou another atom or to a list. New lists are
constructsa by allocating vacant cells from a free list, and placing
into them pointers to existing lists, pointers to fragments of lists,
or pointers to atoms. Pointers within existing lists are not normally
modified, and thus several lists or atoms may reliably refer to the
same underlying list fragment as part of their value, without having to

10

15

20

25

30

35

Patent

-2-

make their own copy. The above described manipulation of linked list
structures is termed list processing. It is implemented in specialized
data processors designed particularly for 1ist processing, and also in
general purpose data processors.

A1l accessible memory cells may be reached either by tracing down a
list referenced by an atom, by tracing down a list referenced by a
stack entry, or by tracing down the free list. As the values of atoms
and the stack change, some cells become inaccessible. Identifying
these cells and adding them back to the free Tist is called garbage
collection.

In a survey by Cohen, "Garbage Collection of Linked Data Structures,"
ACM Computing Surveys, September 1981, pp. 341- 367, garbage collection
strategies are classified as two main types: (1) mark and sweep, and
(2) reference counter based. The basic mark and sweep strategy is to
trace down all lists from the base atoms and stack zniries, marking
each accessibie memory cell by setting a bit providea for that purpose.
Then memory is scanned, and all unmarked cells are reclaimed. The mark
bits are usually also reset during this scan. Processing must be
halted while the marking operation is in progress, which can result in
large delays. These unanticipated delays cause inconvenience, not to
mention outright failure, in systems which must exhibit real time or
conversational response, such as process control or spoken natural
language communication. In addition to the delay of waiting on the
collector to find new free cells, data structures typically become
scattered through a large area of memory. In a paging virtual memory
system this results in page thrashing, which degrades response time and
generally limits the amount of work that can be done by the machine.
One improvement to mark and sweep strategies is to use two bits, and a
more complicated marking process which is able to proceed without
halting the 1ist processor. One such strategy is disclosed in United
States Patent #4,121,286 Venton, et. al. However, according to
Hickey, "Performance Analysis of On-the-Fly Garbage Collection,”
Communications of the ACM, Nov. 1984, pp. 1143-1154, up to three times
as much processing power may need to be devoted to garbage collection
as to list processing in order to guarantee that 1ist processing need
never halt to wait for the collector to find a needed free cell.

10

20

25

30

35

Patent

-3-

A relative of mark and sweep, Baker's Algorithm, is the method used in
many commercial 1ist processing systems. This method involves parti-
tioning memory into at least two spaces, evacuating structures from one
space to the other, and leaving behind forwarding pointers in the
evacuated space. The "to-space" is then purged of all references to
the evacuated space via a linear scan in which all pointers to the
evacuated "from-space" are replaced with the forwarding pointer.
Copying a cell to the "to-space" is equivalent to marking. Another
advantage of Baker's algorithm is that cells are allocated sequentially
from to-space. A variant of Baker's algorithm is described by
Lieberman, "A Real-Time Garbage Collector Based on the Lifetimes of
Objects," Communications of the ACM, June 1983, pp. 419-429.

The second method described by Cohen requires keeping a reference
counter for each cell, which is incremented when a new pcinter to the
cell is created, and which is decremented when a pointer is destroyei.
When the counter is decremented to zero, the cell may be immediately
reclaimed and added back to the free 1ist, thus guaranteeing no deiays
in finding free cells. Where large cells or blocks of storage are
being infrequently manipulated, such as in certain operating system
data structures, reference counters have long been used. Their use has
not been as common in list processing systems because of the overheac
in storing and updating the counters, and because of their inability to

reclaim cyclic lists.

Experts disagree over the importance of reclaiming cyclic lists. For
example Winston, in his widely used text LISP, 2nd Ed., Addison-Wesley,
1984, p. 141, points out the inadvisability of any structure requiring
modification of existing list cells (construction of cyclic lists
requires the sort of list modification which renders multiple refer-
ences to common underlying 1ist fragments unreliable; cyclic structures
also render certain processing operations interminable). Lieberman, in
the above mentioned article, considers use of cyclic lists to be an

important technique.

Overhead is a problem because counters must be theoretically as large
as a pointer, and must be kept current. Cohen mentions methods that
have been suggested to alleviate one or both the overhead problems for

10

15

20

25

30

Patent

-4

reference counters. The earliest is based on the observation that most
reference counters will be small; in fact, many will never exceed one
or two. In this method, when a counter reaches its maximum value it js
no longer updated. When and if memory is finally exhausted, a conven-
tional mark and sweep method is used to reclaim cells with maximum
value counters, and to reclaim cyclic lists. United States Patents
numbers 4,447,875 and 4,502,118 disclose a very specialized type of
list processing system, called a Reduction Processor, having a garbage
collection system which uses reference counters in conjunction with

mark and sweep.

A more sophisticated method of employing small reference counters, de-
scribed in Cohen's article, is to assume all cells have a reference
count equal to "one," unless the cell is entered in one of several hash
tables. The hash table for cells with counts greater than one stores
explicitly a counter of necessary maximum size. The tables are not
updated immediately, however, due to overhead. Rather, a log of
transactions is kept, and the tables are periodically updated; which
gets back to the situation of occasional delays. One commercial vendor
of list processing machines states that reference counters and tables
are used, and these machines exhibit visible pauses for garbage

collection.

United States Patent #4,435,766, although not related to list process-
ing or to garbage collection, discloses something which is primitively
like a reference counter. This is called a lock counter, and is used

to count the number nested resource locks created by a process on a

resource, such as a computer peripheral.

Other United States Patents containing teachings of garbage collection
in list processing systems, reference counting, replication, cache
partitioning, and memory expansion are #4,432,057, Daniell, et. al.;
#4,193,115, James Albus; #4,215,397, Gim Hom; #4,558,413, Schmidt and
Lampson; and #4,463,424, Mattson and Rodriguez-Rosell.

10

15

20

25

Patent

Objects of the Invention

It is an object of the present invention to provide an improved refer-
ence counter garbage collection mechanism for list processing, which
has the advantages of small reference counters, while retaining the
absolute determinacy and most of the simplicity of full sized counters.

Additional objects of the invention include: reduction of the overhead
of updating reference counters; elimination of memory fragmentation
typically caused by mark and sweep methods; and reduction of the
complexity and overhead of other reference counter systems attempting
to employ small counters.

Another object is to provide these advantages in such a way that they
can be incorporated into data processing systems of the type currently
in use, with a minimum of impact to the design and operation of these
systems.

It is also an object of the invention to provide a iiethod of garbage
collection which is simple and robust enough to be used in next genera-
tion systems, especially those with large memories or employing highly
parallel processing.

It is a further object of the invention to provide practical real-time
list processing garbage collection.

Further objects and advantages of the present invention will become
apparent from a consideration of the drawings and ensuing description

thereof.

Summary of the Invention

According to the invention, a reference counter of arbitrarily small
size is kept for each cell. Each time a new pointer to the cell is
created the counter is incremented, and each time a pointer to the cell
is destroyed the counter is decremented. When the counter becomes zero
the cell is returned to the free list. When any pointers within said

10

15

26

25

30

Patent

-6-

cell are in turn destroyed, the counters of the cells to which they
point are similarly decremented and checked for zero.

On the occasion that a counter can no longer be meaningfully incre-
mented because it has reached its maximum value, an additional cell is
obtained. Then the contents of the original cell, some additional
count information, and linking information to relate the two cells to
the former 1list structure, are stored in the two cells. The additional
count information is incremented to reflect the new reference. The new
reference pointer value will be adjusted to point appropriately within
the new cell structure.

By the above method, all inaccessible cells are immediately identified
and reclaimed; thus there is never an unanticipated delay when needing
a free cell. The fixed and deterministic overhead of updating counters
is accepted in lieu of the unpredictable delays of all systems which do
not immediately identify and reclaim inaccessible celis. With small
reference counters the overhead can be made quite small; less, in
fact, than that of mark and sweep systems which either must use a lot
of processing power to continuously locate jnaccessible cells. or
suffer degradation due to memory fragmentation.

Description of the Drawings

FIG. 1 is a diagrammatic view of a list processing system showing the

invention incorporated therein.

FIGS. 2 and 3 show the structures of a standard cell and an expanded

cell, respectively.

FIG. 4 is a diagrammatic view of the registers and data paths used by
the garbage management system.

FIG. 5 is a flow diagram of the garbage collection algorithm for adding

references.

FIG. 6 is a flow diagram of the garbage collection algorithm for

deleting references.

10

15

20

25

30

11U LCi e

-7-

FIG. 7 is a flow diagram of the garbage collection algorithm for

accessing cells of various types in a uniform manner.

FIG. 8 is a flow diagram of the garbage collection algorithm for
obtaining cells from the free list and returning free cells to the free
list.

FIG. 9 shows the data structures used to implement an alternate embodi-
ment of the invention in which reference counter information and
references to a list structure may be distributed among several memory

cells.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring first to FIG. 1 brief consideration will be given to a
typical list processing system organized on a modular basis suited to
the invention. The system comprises (i) a central processing unit or
list processor LP, (ii) a memory system MEM, (iii) peripneral units
PG1, PU2, AM, (iv) a garbage manager GM, and (v) an intercommunication
medium ICM for memory to processor or peripheral unit communication.
Yodules include the provision of needed control information about when
references to memory cells are being created and destroyed, and the
pruvision of space within the cell format for sto}ing a reference
counter. The arrangement and quantity of the various modules shown in
FIG. 1 are typical only and not intended to be limiting.

Interface to the List Processor

The list processor LP is provided with a cell access interface CAIl for
retrieving or updating the contents of memory cells. Such accesses
from the Tist processor LP to the memory system MEM are intercepted by
the garbage manager GM, which is interposed between the 1ist processor
LP and the memory system MEM. The memory system MEM as shown in FIG. 1
is comprised of a memory manager MM, a cache memory CM, a main memory
MA, and an auxiliary memory AM which is typically a peripheral unit
such as a disk used as a backing store. Some data processing systems
may omit or add elements of the memory system MEM.

10

15

20

25

racveiiy

-8-

A second interface to the list processor LP is the control function
interface CFI1 which the processor uses to indicate what type of access
to memory is being made, and to perform certain control functions. In
addition to a retrieve RTV and a store STR function normally associated
with memory interfaces, there are special control functions which are
normally used only by list processors employing reference counter
garbage collection. If these special control functions are not already
present, the list processor can be appropriately modified to include
them in the control function interface CFI1. The functions which the
control function interface CFI1 communicates to the garbage manager GM

are:
RTV - Access to retrieve cell contents

STR - Access to store cell contents

NEW - Get a cell from the free list

ADD - Add a new reference to a cell

DEL - Destroy a reference to a cell

EGM - Set the free list pointer and enable garbagé manager

DGM - Retrieve free list pointer and disable garbage manager

SDL - Set dynamic space delimiter

With each function presented on the control function interface CFI1,
the list processor LP also provides a cell address on the cell access
interface CAIl. With access functions, the list processor LP will also
provide cell content data (STR), or expect cell content data to be
provided to it (RTV). The control function interface CFI1 is also used
to return status and exception information to the 1ist processor LP, as

for example whether the function was successfully completed, and if not

why.

10

15

20

25

30

racent

-9-

There is also a cell access interface CAIZ and a control function
interface CF12 from the garbage manager GM to the memory MEM, which are
similar to the cell access interface CAIl and control function inter-
face CFI1, except that the control function interface CFI2 provides
only access (retrieve and store) functions. The cell access interfaces
CAI1 and CAIZ2 and the control function interface CFI2 may be part of
the intercommunication medium ICM; however, the control function
interface CFI1, because of the various unique functions described
above, will be specialized.

Division of Responsibility

In a typical list processing system there are several tasks, each with
its own logical area of menory. There may also be more than one method
of garbage collection available. It is desirable, therefore, that the
initiation and termination of the operation of the garbage marager GM
for specified areas of memory be controlled by the list processor LP.

Wdhen the list processor LP wishes the garbage manager GM to manage free
space in an area of memory, it links the free cells in that area into a
free 1ist. If there are pre- existing list structures in the area
which were not maintained under garbage manager GM control, the list
processor LP computes and stores correct values for their refcrence
counters. The list processor LP then transmits the address of the head
of the free list to the garbage manager GM, along with the enable
function EGM, which initiates garbage manager GM control of the free
list. After that point, the garbage manager GM assumes all control of
the free list, and the 1ist processor LP retains control of all Tist
elements traceable from atoms and stack entries. The list processor LP
may regain full control and retrieve the free list pointer by issuing
the disabling command DGM on the control function interface CFIl. The
garbage manager GM may also notify the list processor LP of exceptional
conditions, such as free list exhaustion, using the control function
interface CFIl.

10

15

20

25

ratent

-10-

Data Structures

FIG. 2 shows the format of a list element LE, comprised of a cell A, to
which there are small numbers of references R. A description of each
field of bits within cell A is as follows:

CTR - reference counter having a range of possible values from 1 to
the Nth power of 2, where N is the number of bits allocated for the

counter.

TAG - a code used by the list processor to indicate the type of cell
or other memory data item, in this case an appropriate code to indicate
a standard small counter cell,.

CAR - the first of the two pointers contained in the cell.
CDR - the second pointer contained in the cell.

FIG 3 shows the same list element as FIG 2, with an additionai refer-
ence RA, exceeding the capacity of reference counter CTR. As will be
explained subsequentiy, two physical memory cells are now used to
represent iist element LE. The original cell A has been modified to
contain an expanded reference counter CTRX in place of its first
pointer CAR, a link pointer LINK to a second cell in place of its
second pointer CDR, and an appropriate tag TAGZ to indicate the format
of the cell. A second cell AA contains the TAG, CAR, and CDR of the
original cell.

Operation of the Garbage Manager

The garbage manager GM is a sequential state machine implementing the
process states of FIGS. 5 through 8 as described below. The garbage
manager GM has the purposes of maintaining the reference counters and
the free list, and of handling memory references on behalf of the 1list
processor LP so that the 1ist processor LP need not normally concern
itself with those aspects of cell format which have to do with various

reference counter configurations.

10

15

20

25

30

35

ratent

-11-

The garbage manager GM has internal storage registers, data paths, and
functional units as shown in FIG. 4. When the 1ist processor LP re-
quests a function of the garbage manager GM, it sends the appropriate
function code on the control function interface CFI1, sends cell
address information on the address portion ADDR1 of the cell access
interface CAIl to a cell address register CA, and sends and accepts
cell content and other information on the content portion CONTENT1 of
the cell access interface CAIl to a group of cell content registers
CELL, which include: a reference counter CTRC, an extended reference
counter portion XC, a tag TAGC, a first pointer CARC, and a second
pointer CDRC. Similarly, the garbage manager GM uses the cell address
register CA and cell content registers CELL to communicate with the
memory manager MM over the control access interface CAIZ, along with
appropriate function codes on the control function interface CFI2. A
memory address can also be supplied from a free pointer register
FREPTR, which is used to store the address of the head of the free
list, and an old cell address register OCA, which is used in deleting
references. A multiplexer MPX is used to select which of these three
sources of address information will be sent on the address portion
ADDRZ of the cell access interface CAI2. An arithmetic and logic unit
ALU is provided for computation and testing. A temporary register SAVE
is used for computations and exchanges. Simple transfers are accom-
plished directly via an internal bus IB. The entire group of ceil
content registers CELL is transferred on the cell access interfaces as
a unit, but one of its component registers is transferred on the
internal bus IB. A select register S has the special function of
selecting the first pointer CARC or second pointer CDRC for transfer.
The delimiter register DLIM is used to partition Togical memory space
into a dyramic region in which cell allocation is handled by the
garbage manager GM, and a static region managed by the list processor
LP as will be explained in the discussion of Partial Tag Encoding in

Pointers.

FIGS. 5 through 8 define important processes of the garbage manager GM
using the functional units of FIG. 4 and the following special terms

and conventions:

10

15

20

25

-12-

EXP - A tag value indicating use of the expanded counter
format of FIG. 3.

NIL - A special pointer value designating an empty list.

MAX - The maximum reference counter value that can be
represented 1in the small counter format of FIG. 2.

MIN - The minimum counter value representing that only one

reference is present.

MEM(X)€-Y - The operation of storing the contents of a
register Y into a cell of memory MEM whose address
is in a register X.

Y2{-MEM(X2) - The operation of retrieving a cell of memory
MEM whose address is in a register X2, and placing the
contents of that cell into a register Y2.

CELL - Indicates the entire group of registers CTRC, TAGC,
CARC, CDRC is referenced or updated, except that when
transfer is to or from memory MEM, the extended
portion XC of the reference counter CTRC is not included
in the transfer.

CELL(S) - References the register CARC when the contents
of the register S are zero, and references the register
CDRC when the contents of S are one.

CELL(CDRC) - Indicates transfers which take place as if the
entire group of registers CELL were participating, but
in which only the register CDRC is allowed to be
updated.

NEW(CA) and REL(CA) - Indicate invocation of the obtain cell
process NEW and the release cell process REL, which
will be described subsequently.

Patent

10

15

20

25

30

35

rPatent

-13-

FIG. 5 defines the process the garbage manager GM uses in response to a
request from the list processor LP to add a reference to a cell. The
Tist processor LP must supply a cell address, and may supply the cell
contents. Step Al checks whether cell contents have been supplied, and
if not, the garbage manager GM will retrieve them from the memory
system MEM. The reference counter is then identified and incremented
in step A2. Step A3 checks for small counter overflow. If a previous-
ly small format cell's counter becomes larger than can be accommodated
within the format, then cell expansion will take place as follows. The
garbage manager GM obtains an additional cell from the free list via
step A5, which step A6 uses to contain the CAR, CDR, and TAG of the
original cell. Step A7 places into the original cell in memory the
expanded count, a link to the new cell, and an appropriate tag. Step
A8 saves the updated reference counter in memory in the case where cell
expansion did not take place.

FIG. 6 defines the process of deleting a reference to a cell. In step
Bl the old cell address register OCA is initialized to the value NIL.
If in step B3 the cell is found to be not in the dynamic portion of
memory, then no further processing of the cell is required, and the
terminating step B4 is invoked. At step B4 the old cell address OCA is
checked to see whether this deletion was the result of an original
request, in which case the process terminates. If in step B3 the
reference is to a cell in the dynamic portion of memory (i.e. not an
atom), then the cell is retrieved and its counter decremented in step
B5. In step B6 the counter portion of an expanded format cell is
returned to memory, and expanded counters decrementing below the
threshold of expansion cause the cell to be reformatted as a small
counter cell, with one of the two cells of the expanded format being
returned to the free list. If in step B7 the last remaining reference
to the cell has not been deleted then the small format cell is stored
in memory via step B8, otherwise the cell must be returned to the free
list. Returning the cell to the free 1ist requires deleting any
references which the cell makes to other cells, a process handled
entirely within the garbage manager GM. This recursive function is
accomplished without a stack by using the cells being freed to store
information which is local to each level of recursion. The CA register
contains the address of the cell of current interest. If there was a

10

Fd
(8]

20

25

30

35

ratent

-14-

previous cell, its address is in OCA. A still prior cell address is
stored in the cell addressed by OCA. The S register is used to indi-
cate which pointer within the current cell is being processed, the CAR
or CDR. When a cell is to be freed, then S is set to zero in step B9,
which selects the CAR. In step B10 an exchange is then performed in
which the old cell address OCA is moved into CELL(S), the current cell
address CA is moved to OCA, the former contents of CELL(S) are moved to
CA, which will become the new cell address of interest, and the value
of S itself is saved in the counter field of the current cell. The
current cell is then stored back to memory so that the S and OCA values
in it, as well as the CDR pointer, may be recalled when needed. The
process of considering the current cell address in register CA as a
deleted reference then begins again with step B3. When such process is
finished, the value in register OCA is used to determine whether it was
an initial deletion requested by the 1ist processor LP which hus
finished, or whether it is a deletion that was invoked by the garbage
manager GM. In the latter case, the OCA register is used in step Bll
to retrieve the former cell of interest, whose contents are used to
restore other necessary information that was saved earlier. Then S is
incremented, and it selects the CDR of the current cell for deletion.
When control is again returned to step Bll, incrementing S reveals
neither CAR or CDR to be selected, so the current cell is ready to be
returned to the free list via step Bl2, and its hénd]ing is conglete.

FIG. 7 defines how the garbage manager GM responds to requests from the
list processor LP for cell storage and retrieval. On a retrieval
function RET the cell contents are obtained from memory in step Cl. If
in step C2 the cell turns out to be in expanded format, then the second
cell of the pair is also be retrieved, and the information it contains
is passed back to the 1ist processor LP. On a store function STO step
D1 determines whether or not the cell is in expanded format by looking
at the count value of the cell, which is always maintained to full
precision in communications between the garbage manager GM and the list
processor LP. If the cell is in expanded format, then the first member
of the cell pair is retrieved in step D2 in order to obtain the address
of the second cell of the pair, which is then used by step D3 to store
the CAR, CDR, and TAG from the list processor.

10

15

20

25

30

ratent

-15-

FIG. 8 defines the processes of obtaining a cell from the free list,
NEW, and of releasing a cell to the free list, REL. These processes
may be invoked by the list processor LP by using the function codes for
retrieval RTV and storage STR on the control function interface CFI1,
or by other garbage manager GM processes. In the obtain cell process
NEW, step E1 checks for possible free 1ist exhaustion, and step E2
obtains the address of the first cell from the free list, putting that
address in the cell address register CA for communication back to the
invoking process. In the release process REL, the cell to be released
is threaded on to the head of the free list by updating its pointers
and updating the free list pointers as shown in step FIl.

Cache Operation

While correct logical function of the garbage manager GM is nu. depen-
dent on any particular implementation of the memory subsystem, its
efficiency is. As seen from the preceding process descriptions, the
garbage manager generates additicnal memory references, many of which
are store operations. References to the same cell are frequently close
together in time. Therefore, if the memory subsystem uses & high speed
cache buffer having the characteristic that every update operation 1s
not written to main memory (i.e. main memory is updated only when the
contents of that particular cache cell must be evacuated to hoid
another memory cell), then overall performance will be greatly im-

proved.

Addition and Deletion of References by the List Processor

The 1ist processor LP exercises a great deal of control over the
efficiency of the garbage manager GM by the frequency with which it
requests addition and deletion of references. Whenever the list proces-
sor performs a modular operation over a list structure which is static
for the duration of the operation, however compiex that operation may
be, then reference control requests may be deferred until the end of
the operation. This results in the elimination of many intermediate
reference control operations. For example, consider a list processing
primitive which scans a list looking for a particular item. Each
operation in updating a list scanning pointer to the next element in

10

15

20

25

30

ratent

-16-

the Tist could be viewed as requiring one reference deletion and one
reference addition. Alternately, knowing the structure of the opera-
tion being performed, it becomes necessary to perform only one refer-
ence addition (for the result at the end of the operation), and one
deletion (for the initial argument structure, again performed at the
end of the operation). To go even further, reference addition and
deletion in the above example can be made the responsibility of whatev-
er routine invoked this function, allowing that routine to also opti-

mize its reference control operations.

Partial Tag Encoding in Pointers

A further efficiency consideration concerns the ability to determine
whether a referenced memory item is a dynamically allocated cell, or a
static entity such as an atom, by examining the pointer to the item,.
This may be done, for example, by partitioning the address space intc
static and dynamic portions as described above, which is particularly
convenient in virtual memory or segmented memory systems. If such is
the case, then addition and deletion of references to static items will
not require additional memory references. If such is not the case, then
the items will have to be retrieved and their tag fields examined even
if they are static. Stack entries are considered static for this

purpose.

DESCRIPTION OF ALTERNATE EMBODIMENTS

The embodiment described above has the advantage that it easily inter-
faces with certain types of existing list processing systems. Those
skilled in the art will recognize various alternate embodiments, some
of which are more suitable for their purposes. Selected ones are
briefly described below.

Software Implementations

Dynamic expansion of reference counters could be emulated by list
processing software running on a conventional data processor. This has
been accomplished to verify the concepts and principles of the method
of garbage collection set forth above. Software implementation also

(8a]

10

15

20

25

30

ratent

-17-

has a use in studying the behavior of the garbage manager for alternate

configurations of reference counter size and expansion format.

Zero Size Reference Counters

The small counter format cell may be so structured that it has no space
allocated for a reference counter in which case it is presumed to have
the value one. When a reference to such a cell is deleted, then the
cell is returned to the free list. When a reference is added, the cell
must be expanded. The effectiveness of such small counters depends
upon the observation that a majority of counters have the value one in
many 1ist processing applications, and upon the ability of a cache
memory to handle temporary excursions above the value one without
actually expanding and contracting the cell in memory. The cache
might, for example, employ a third counter size chosen to handie most

such excursions.

Using such a counter size, the reference counter method cculd be more
easily adapted to a list processing system which does not have any bits
reserved tor garbage collection purposes. This includes some systems
which use Baker's algorithm. A second principle advantage ot & zero
count system is that it allows all non-data bits, such as tags. to be
moved out of the cell and into the reference (poiﬁter) to the cell. In
mark and sweep garbage collection this cannot be done because the cells
are accessed during the sweep phase by a scan of memory independent of
the pointers to the cell. In a normal reference counter system it
cannot be done because the counter itself must be present. To remove
ail such non-data bits, fully encoding the tag in the pointers to the
cell, has the advantage that the type of cell is known from the pointer
without having to retrieve the cell, and the advantage that cell data
content may use the full memory cell size. Standard 32 bit data formats
could, for example, be used in a processor employing a common 32 bit

memory width.

Other Arrangements of CTR, TAG, CAR, CDR and LINK

When a counter must be expanded, there are many ways of allocating the
cell information among the two cells. In addition to just placing the

10

15

20

25

30

ratent

-18-

information differently than in FIG. 3, the counter information may be
distributed between the two cells. FIG. 9 shows an expansion in which
an original cell OLDCELL is left completely unmodified by the expan-
sion, and a new cell NEWCELL contains a new counter CTR2 of a the same
size as the old counter CTRl. The added reference NEWREF is adjusted
to point to the new cell NEWCELL. The pointers CAR1 and CDR1 of the
new cell NEWCELL are copied from the original cell OLDCELL. In this
way the link is from the new cell NEWCELL to the Tist structure BB and
CC being referenced by the original cell OLDCELL, rather than between
NEWCELL and OLDCELL. This distribution has the result that no refer-
ence is added to the original cell OLDCELL, and its reference counter
CTR1 may remain at the same value. The new reference NEWREF is to the
new cell NEWCELL. The new cell NEWCELL then adds new references to two
other already existing cells BB and CC, whose reference counters must
be incremented, and which may of course have to be expanded if their
reference counters are already at maximum value. In the worsi case the
entire structure being referenced has all its reference counters at
maximum value, and thus the entire structure is copied through individ-

ual expansions of each of its cells.

This distribution of counter information among several small counters
has the advantage of maintaining a uniform cell format, and of elimi-
nating the extra retrieve operations to get the sécond member of an
expanded cell pair. Its disadvantage is that 1ist processing software
which employs 1ist splicing techniques would need to be carefully
examined to assure that it would produce the anticipated result.

Strategies may be mixed. For example, zero size counters may be main-
tained for dynamically allocated numeric quantities resulting from
computation, while small counters of some other size are used for list
cells containing pointer pairs. Any of the distribution schemes, or a
mix in which some cells are expanded one way and some another, may be

used with the various cell types.

Addition to a Conventional Data Processor

The function of the garbage manager GM may be placed on the memory bus
of a conventional data processor, in a manner similar to a memory

10

15

20

25

30

Patent

-19-

module or peripheral controller. It may include its own memory, or
re-direct references again on the bus to the system's memory. Since
there are no dedicated signal paths for the reference control informa-
tion, it would be communicated by some other means, as for example by
storing a special code in a fixed address, or by accessing one of
several fixed addresses. The "store immediate" instructions of some
processors would be suitable for this purpose. Such an embodiment
would allow efficient use of the invention in conjunction with a
conventional processor.

Closely Integrated Processor and Garbage Manager

the 1ist processor and garbage manager may share data paths, functional
units, and sequencers. This would require a close coupling of the two,
but could produce an economic embodiment for purposes such as iwplemen-
tation of a 1ist processor on a VLSI (Very Large Scale Integration)
chip.

Multiple Processors and Highly Parallel Processors

Where there are multiple processors and each has its own memory, each
would also have its own garbage manager. The simplicity and determi-
nacy of garbage management using the present invention would perinit
simpler processors and would make coordination among the processors
easier. The immediate identification and reuse ot garbage cells
minimizes the amount of memory required for each processor.

Where there are memory modules separate from the processors, with some
means of interconnecting the processors and the memories, a garbage
manager could be included either with each processor, or with each
memory module. In the case of including a garbage manager with each
processor, some means would need to be provided to assure consistent
results when two or more processors were updating elements of the same
memory module. In the case of including a garbage manager with each
memory module, interconnection traffic would be reduced (because
expansions and second cell accesses are handled locally), and the
problem of synchronizing multiple access would be somewhat reduced.

10

15

Patent

-20-

The above confiqurations avoid the problem typically encountered of
having to scan the pointers of all other memory modules when looking
for garbage within a particular module. This becomes more important as
memories become larger and are partitioned into more modules to support

parallel processing.

Garbage management in the manner prescribed by the invention is also
compatible with methods of controlling the sharing of transient list
structures, such as copying lists, or use of a forwarding table. The
garbage manager may even be used to implement the operation of a
forwarding table by merely marking the table entries as being in
expanded tormat, and by providing some means to inhibit the
de-expansion of table entries (which could be as simple as initializing
each entry with a count exceeding the maximum small format counter

value).

Those skilled in the art will recognize that many cther embodiments may
be found which use the basic principles of the invention.

10

ratent

£l
252
ABSTRACT

In a Tist processing system, small reference counters are maintained in
conjunction with memory cells for the purpose of identifying memory
cells that become available for re-use. The counters are updated as
references to the cells are created and destroyed, and when a counter
of a cell is decremented to logical zero the cell is immediately
returned to a list of free cells. In those cases where a counter must
be incremented beyond the maximum value that can be represented in a
small counter, the cell is restructured so that the additional refer-
ence count can be represented. The restructuring involves allocating
an additional cell, distributing counter, tag, and pointer information
among the two cells, and linking both cells appropriately into the

existing list structure.

